MATHEMATICS

DPP No. 51

Total Marks: 30

Max. Time: 33 min.

Topic: Vector			
Type of Questions		M.M., Min.	
Single choice Objective (no negative marking) Q.1,2,3	(3 marks, 3 min.)	[9,	9]
Multiple choice objective (no negative marking) Q.4	(5 marks, 4 min.)	[5,	4]
Subjective Questions (no negative marking) Q.5,6,7,8	(4 marks, 5 min.)	[16,	20]

- 1. Let \hat{a} , \hat{b} , \hat{c} are three unit vectors such that $\hat{a} + \hat{b} + \hat{c}$ is also a unit vector. If pairwise angles between \hat{a} , \hat{b} , \hat{c} are θ_1 , θ_2 and θ_3 respectively then $\cos \theta_1 + \cos \theta_2 + \cos \theta_3$ equals (A) (-3/2) (B) -3 (C) 1 (D) -1
- 2. A tangent is drawn to the curve $y = \frac{8}{x^2}$ at a point $A(x_1, y_1)$, where $x_1 = 2$. The tangent cuts the x-axis at point B. Then the scalar product of the vectors \overrightarrow{AB} and \overrightarrow{OB} is :
 - (A) 3
- (B) -3
- (C) 6
- (D) -6
- 3. If the angle between \vec{a} and \vec{c} is 25° and the angle between \vec{b} and \vec{c} is 65° and $\vec{a} + \vec{b} = \vec{c}$ then the angle between \vec{a} and \vec{b}
 - (A) 45°
- $(B) 60^{\circ}$
- $(C) 65^{\circ}$
- (D) 90°
- **4.** The vectors $\vec{a} = 3\hat{i} 2\hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} 2\hat{k}$ are adjacent sides of a parallelogram. Then angle between its diagonals is
 - (A) $\pi/4$
- (B) $\pi/3$
- (C) $3\pi/4$
- (D) $2\pi/3$
- 5. If $\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{OB} = 3\hat{i} + 4\hat{j} + 7\hat{k}$, $\overrightarrow{OC} = -3\hat{i} 2\hat{j} 5\hat{k}$ where O is origin then find the ratio in which point B divide AC.
- 6. If \vec{a} and \vec{b} are non collinear vectors and $\vec{A} = (p+4q)\vec{a} + (2p+q+1)\vec{b}$, $\vec{B} = (-2p+q+2)\vec{a} + (2p-3q-1)\vec{b}$ then determine p and q such that $3\vec{A} = 2\vec{B}$
- 7. In a triangle OAB, E is mid point OB and D is point on AB such that AD : DB = 2 : 1. If OD and AE intersects at P determine ratio OP : PD using vector method (where O is origin)
- 8. In a ΔABC, D divides BC in the ratio 3 : 2 internally and E divides CA in the ratio 1 : 3 internally. The lines AD and BE meet at H and CH meet AB in F, Find the ratio in which F divides AB

Answers Key

1. (D) **2.** (A) **3.** (D) **4.** (A)(C)

5. 1: 3 externally **6.** p = 2, q = -1

7. 3:2 **8.** 2:1

